## View abstract

### Session S14 - Global Injectivity, Jacobian Conjecture, and Related Topics

Monday, July 12, 14:00 ~ 14:50 UTC-3

## Real Jacobian mates

### Janusz Gwoździewicz

#### Pedagogical University of Cracow, Poland   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloak74107b93a1a69987c12b8866e5dbce18').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addy74107b93a1a69987c12b8866e5dbce18 = 'gw&#111;zdz&#105;&#101;w&#105;cz' + '&#64;'; addy74107b93a1a69987c12b8866e5dbce18 = addy74107b93a1a69987c12b8866e5dbce18 + '&#117;p' + '&#46;' + 'kr&#97;k&#111;w' + '&#46;' + 'pl'; var addy_text74107b93a1a69987c12b8866e5dbce18 = 'gw&#111;zdz&#105;&#101;w&#105;cz' + '&#64;' + '&#117;p' + '&#46;' + 'kr&#97;k&#111;w' + '&#46;' + 'pl';document.getElementById('cloak74107b93a1a69987c12b8866e5dbce18').innerHTML += '<a ' + path + '\'' + prefix + ':' + addy74107b93a1a69987c12b8866e5dbce18 + '\'>'+addy_text74107b93a1a69987c12b8866e5dbce18+'<\/a>';

Let $p$ be a real polynomial in two variables. We say that a polynomial~$q$ is a real Jacobian mate of $p$ if the Jacobian determinant of the mapping $(p,q):\mathbb{R}^2\to\mathbb{R}^2$ vanishes nowhere.

We will present a class of polynomials that do not have real Jacobian mates. In particular every polynomial such that its Newton polygon has a specific edge belongs to this class. Then we will apply this result in order to simplify the proofs in two articles cited below:

[1] F. Braun, J.R. dos Santos Filho, The real jacobian conjecture on $\mathbb{R}^2$ is true when one of the components has degree $3$, Discrete Contin. Dyn. Syst. 26, (2010) 75--87.

[2] F. Braun, B. Oré-Okamoto, On polynomial submersions of degree $4$ and the real Jacobian conjecture in $\mathbb{R}^2$, J. Math. Anal. Appl 443, (2016) 688--706.