## View abstract

### Session S07 - Differential operators in algebraic geometry and commutative algebra

Monday, July 19, 16:00 ~ 16:30 UTC-3

## On the isotropy of a polynomial derivation in two variables

### Iván Pan

#### Universidad de la República, Uruguay   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloake97a1aa409761db4a2ab760a232e12e0').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addye97a1aa409761db4a2ab760a232e12e0 = '&#105;v&#97;n' + '&#64;'; addye97a1aa409761db4a2ab760a232e12e0 = addye97a1aa409761db4a2ab760a232e12e0 + 'cm&#97;t' + '&#46;' + '&#101;d&#117;' + '&#46;' + '&#117;y'; var addy_texte97a1aa409761db4a2ab760a232e12e0 = '&#105;v&#97;n' + '&#64;' + 'cm&#97;t' + '&#46;' + '&#101;d&#117;' + '&#46;' + '&#117;y';document.getElementById('cloake97a1aa409761db4a2ab760a232e12e0').innerHTML += '<a ' + path + '\'' + prefix + ':' + addye97a1aa409761db4a2ab760a232e12e0 + '\'>'+addy_texte97a1aa409761db4a2ab760a232e12e0+'<\/a>';

If $D:k[x,y]\to k[x,y]$ is a derivation, where $k$ is an algebraically closed field of characteristic zero, we denote by $Aut(D)$ the group consisting of (plane) polynomial automorphisms which commute with $D$. We determine when $Aut(D)$ is an algebraic group.