## Talks

Wednesday, July 14, 16:00 ~ 16:30 UTC-3

## Cyclic quadrilaterals and smooth Jordan curves

### Joshua Greene

#### Boston College, USA   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloak4693e66d0fa4afa82d586a5e6da88e1c').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addy4693e66d0fa4afa82d586a5e6da88e1c = 'j&#111;sh&#117;&#97;.gr&#101;&#101;n&#101;' + '&#64;'; addy4693e66d0fa4afa82d586a5e6da88e1c = addy4693e66d0fa4afa82d586a5e6da88e1c + 'bc' + '&#46;' + '&#101;d&#117;'; var addy_text4693e66d0fa4afa82d586a5e6da88e1c = 'j&#111;sh&#117;&#97;.gr&#101;&#101;n&#101;' + '&#64;' + 'bc' + '&#46;' + '&#101;d&#117;';document.getElementById('cloak4693e66d0fa4afa82d586a5e6da88e1c').innerHTML += '<a ' + path + '\'' + prefix + ':' + addy4693e66d0fa4afa82d586a5e6da88e1c + '\'>'+addy_text4693e66d0fa4afa82d586a5e6da88e1c+'<\/a>';

I will discuss the context and proof of the following result: for every smooth Jordan curve and for every four points on a circle, there exists an orientation-preserving similarity taking the four points onto the curve. The proof involves symplectic geometry in a surprising way.

Joint work with Andrew Lobb (Durham University).

View abstract PDF

Wednesday, July 14, 16:40 ~ 17:10 UTC-3

## Taut foliations from double-diamond replacements

### Rachel Roberts

#### Washington University in St Louis, United States   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloak1f1a380998cfbc6c228cec9467154d90').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addy1f1a380998cfbc6c228cec9467154d90 = 'r&#111;b&#101;rts' + '&#64;'; addy1f1a380998cfbc6c228cec9467154d90 = addy1f1a380998cfbc6c228cec9467154d90 + 'w&#117;stl' + '&#46;' + '&#101;d&#117;'; var addy_text1f1a380998cfbc6c228cec9467154d90 = 'r&#111;b&#101;rts' + '&#64;' + 'w&#117;stl' + '&#46;' + '&#101;d&#117;';document.getElementById('cloak1f1a380998cfbc6c228cec9467154d90').innerHTML += '<a ' + path + '\'' + prefix + ':' + addy1f1a380998cfbc6c228cec9467154d90 + '\'>'+addy_text1f1a380998cfbc6c228cec9467154d90+'<\/a>';

Suppose $M$ is an oriented 3-manifold with connected boundary a torus, and suppose $M$ contains a properly embedded, compact, oriented, surface $R$ with a single boundary component that is Thurston norm minimizing in $H_2(M, \partial M)$. We define a readily recognizable type of sutured manifold decomposition, which for notational reasons we call double-diamond taut, and show that if $R$ admits a double-diamond taut sutured manifold decomposition, then for every boundary slope except one, there is a co-oriented taut foliation of $M$ that intersects $\partial M$ transversely in a foliation by curves of that slope. In the case that $M$ is the complement of a knot $\kappa$ in $S^3$, the exceptional filling is the meridional one; in particular, restricting attention to rational slopes, it follows that every manifold obtained by non-trivial Dehn surgery along $\kappa$ admits a co-oriented taut foliation. As an application, we show that if $R$ is a Murasugi sum of surfaces $R_1$ and $R_2$, where $R_2$ is an unknotted band with an even number $2m\ge 4$ of half-twists, then every manifold obtained by non-trivial surgery on $\kappa= \partial R$ admits a co-oriented taut foliation.

Joint work with Charles Delman (Eastern Illinois University).

View abstract PDF

Wednesday, July 14, 17:20 ~ 17:50 UTC-3

## The Gordon-Litherland pairing for links in thickened surfaces

### Hans Boden

#### McMaster University, Canada   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloak85fc2537c9c8414b704fb7b371f56097').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addy85fc2537c9c8414b704fb7b371f56097 = 'b&#111;d&#101;n' + '&#64;'; addy85fc2537c9c8414b704fb7b371f56097 = addy85fc2537c9c8414b704fb7b371f56097 + 'mcm&#97;st&#101;r' + '&#46;' + 'c&#97;'; var addy_text85fc2537c9c8414b704fb7b371f56097 = 'b&#111;d&#101;n' + '&#64;' + 'mcm&#97;st&#101;r' + '&#46;' + 'c&#97;';document.getElementById('cloak85fc2537c9c8414b704fb7b371f56097').innerHTML += '<a ' + path + '\'' + prefix + ':' + addy85fc2537c9c8414b704fb7b371f56097 + '\'>'+addy_text85fc2537c9c8414b704fb7b371f56097+'<\/a>';

We introduce the Gordon-Litherland pairing for knots and links in thickened surfaces that bound unoriented spanning surfaces. Using the GL pairing, we define signature and determinant invariants and relate them to invariants derived from the Tait graph and Goeritz matrices. These invariants depend only on the $S^*$ equivalence class of the spanning surface, and the determinants give a simple criterion to check if the knot or link has minimal genus. The GL pairing is isometric to the relative intersection pairing on a 4-manifold obtained as the 2-fold cover along the surface. Time permitting, we will explain how to use the GL pairing to give a topological characterization of alternating links in thickened surfaces, extending the results of Josh Greene and Josh Howie.

Joint work with Micah Chrisman (Ohio State University, Marion) and Homayun Karimi (McMaster University).

View abstract PDF

Wednesday, July 14, 18:00 ~ 18:30 UTC-3

## On classification of genus $g$ knots which admit a $(1,1)$-decomposition

### Fabiola Manjarrez-Gutiérrez

#### UNAM, México   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloakf3e918b497f46016e14c150ffac818ec').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addyf3e918b497f46016e14c150ffac818ec = 'f&#97;b&#105;&#111;l&#97;.m&#97;nj&#97;rr&#101;z' + '&#64;'; addyf3e918b497f46016e14c150ffac818ec = addyf3e918b497f46016e14c150ffac818ec + '&#105;m' + '&#46;' + '&#117;n&#97;m' + '&#46;' + 'mx'; var addy_textf3e918b497f46016e14c150ffac818ec = 'f&#97;b&#105;&#111;l&#97;.m&#97;nj&#97;rr&#101;z' + '&#64;' + '&#105;m' + '&#46;' + '&#117;n&#97;m' + '&#46;' + 'mx';document.getElementById('cloakf3e918b497f46016e14c150ffac818ec').innerHTML += '<a ' + path + '\'' + prefix + ':' + addyf3e918b497f46016e14c150ffac818ec + '\'>'+addy_textf3e918b497f46016e14c150ffac818ec+'<\/a>';

Given an oriented minimal genus Seifert surface $F'$ for a $(1,1)$-knot $K$ it is possible to surger $F'$ along annuli to obtain a simple minimal Seifert surface $F$. Such a surface can be put in a very nice position with respect to the $(1,1)$-position of the knot $K$. Using this kind of surfaces we give a description of a $(1,1)$-knot of genus $g$ as a vertical banding of $(1,1)$-knots of genus smaller than $g$. In addition, we show that any rational knot of genus $g$ is obtained as a vertical banding of $g$ genus one rational knots.

Joint work with Mario Eudave-Muñoz (UNAM) and Enrique Ramírez-Losada (CIMAT).

View abstract PDF

Wednesday, July 14, 18:40 ~ 19:10 UTC-3

## Meridionally essential one-sided spanning surfaces

### Joshua Howie

#### University of California, Davis, USA   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloak8fa5a95b306362a11874e52f8dbdede2').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addy8fa5a95b306362a11874e52f8dbdede2 = 'j&#97;h&#111;w&#105;&#101;' + '&#64;'; addy8fa5a95b306362a11874e52f8dbdede2 = addy8fa5a95b306362a11874e52f8dbdede2 + '&#117;cd&#97;v&#105;s' + '&#46;' + '&#101;d&#117;'; var addy_text8fa5a95b306362a11874e52f8dbdede2 = 'j&#97;h&#111;w&#105;&#101;' + '&#64;' + '&#117;cd&#97;v&#105;s' + '&#46;' + '&#101;d&#117;';document.getElementById('cloak8fa5a95b306362a11874e52f8dbdede2').innerHTML += '<a ' + path + '\'' + prefix + ':' + addy8fa5a95b306362a11874e52f8dbdede2 + '\'>'+addy_text8fa5a95b306362a11874e52f8dbdede2+'<\/a>';

The geography problem for spanning surfaces asks for a classification of all pairs of Euler characteristic and slope which can be realised by a spanning surface for a given knot in the 3-sphere. It is enough to understand the meridionally essential one-sided spanning surfaces, a somewhat larger class of surfaces than the geometrically essential spanning surfaces. We will discuss the existence of such one-sided surfaces, and give an algorithmic solution to the geography problem.

View abstract PDF

Wednesday, July 14, 19:20 ~ 19:50 UTC-3

## Satellites and Lorenz knots

### Jessica Purcell

#### Monash University, Australia   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloak66327509f737365aabcbd7ab476e25eb').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addy66327509f737365aabcbd7ab476e25eb = 'j&#101;ss&#105;c&#97;.p&#117;rc&#101;ll' + '&#64;'; addy66327509f737365aabcbd7ab476e25eb = addy66327509f737365aabcbd7ab476e25eb + 'm&#111;n&#97;sh' + '&#46;' + '&#101;d&#117;'; var addy_text66327509f737365aabcbd7ab476e25eb = 'j&#101;ss&#105;c&#97;.p&#117;rc&#101;ll' + '&#64;' + 'm&#111;n&#97;sh' + '&#46;' + '&#101;d&#117;';document.getElementById('cloak66327509f737365aabcbd7ab476e25eb').innerHTML += '<a ' + path + '\'' + prefix + ':' + addy66327509f737365aabcbd7ab476e25eb + '\'>'+addy_text66327509f737365aabcbd7ab476e25eb+'<\/a>';

We construct infinitely many families of Lorenz knots that are satellites but not cables, giving counterexamples to a conjecture attributed to Morton. We amend the conjecture to state that Lorenz knots that are satellite have companion a Lorenz knot, and pattern equivalent to a Lorenz knot. We show this amended conjecture holds very broadly: it is true for all Lorenz knots obtained by high Dehn filling on a parent link, and other examples.

Joint work with Thiago de Paiva (Monash University, Australia).

View abstract PDF

Thursday, July 15, 16:00 ~ 16:30 UTC-3

## Prime quasi-alternating links are atoroidal

### Cameron Gordon

#### University of Texas at Austin, USA   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloak7850e67b5e9917296cef3eaba44dfb09').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addy7850e67b5e9917296cef3eaba44dfb09 = 'g&#111;rd&#111;n' + '&#64;'; addy7850e67b5e9917296cef3eaba44dfb09 = addy7850e67b5e9917296cef3eaba44dfb09 + 'm&#97;th' + '&#46;' + '&#117;t&#101;x&#97;s' + '&#46;' + '&#101;d&#117;'; var addy_text7850e67b5e9917296cef3eaba44dfb09 = 'g&#111;rd&#111;n' + '&#64;' + 'm&#97;th' + '&#46;' + '&#117;t&#101;x&#97;s' + '&#46;' + '&#101;d&#117;';document.getElementById('cloak7850e67b5e9917296cef3eaba44dfb09').innerHTML += '<a ' + path + '\'' + prefix + ':' + addy7850e67b5e9917296cef3eaba44dfb09 + '\'>'+addy_text7850e67b5e9917296cef3eaba44dfb09+'<\/a>';

A classical result of Menasco is that a prime non-split alternating link is either hyperbolic or a (2,q)-torus link. In 2005 Ozsvath and Szabo introduced the class of quasi-alternating links, which (properly) contains the non-split alternating links. We prove that Menasco's result holds for this more general class: a prime quasi-alternating link is either hyperbolic or a (2,q)-torus link.

Joint work with Steve Boyer (University of Quebec at Montreal) and Ying Hu (University of Nebraska Omaha).

View abstract PDF

Thursday, July 15, 16:40 ~ 17:10 UTC-3

## The L-space conjecture and toroidal 3-manifolds

### Steven Boyer

#### UQAM, Canada   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloak1cfcf76d7399c0bfdd560a60ccb6292f').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addy1cfcf76d7399c0bfdd560a60ccb6292f = 'b&#111;y&#101;r.st&#101;v&#101;n' + '&#64;'; addy1cfcf76d7399c0bfdd560a60ccb6292f = addy1cfcf76d7399c0bfdd560a60ccb6292f + '&#117;q&#97;m' + '&#46;' + 'c&#97;'; var addy_text1cfcf76d7399c0bfdd560a60ccb6292f = 'b&#111;y&#101;r.st&#101;v&#101;n' + '&#64;' + '&#117;q&#97;m' + '&#46;' + 'c&#97;';document.getElementById('cloak1cfcf76d7399c0bfdd560a60ccb6292f').innerHTML += '<a ' + path + '\'' + prefix + ':' + addy1cfcf76d7399c0bfdd560a60ccb6292f + '\'>'+addy_text1cfcf76d7399c0bfdd560a60ccb6292f+'<\/a>';

Hanselman, Rasmussen and Watson have characterised closed, toroidal, non-L-space 3-manifolds expressed as the union of manifolds with incompressible torus boundaries in terms of the gluing map. We discuss analogous results on the left-orderabilty of their fundamental groups suggested by the L-space conjecture together with some applications.

Joint work with Cameron McA. Gordon (University of Texas at Austin) and Ying Hu (University of Nebraska at Omaha).

View abstract PDF

Thursday, July 15, 17:20 ~ 17:50 UTC-3

## Dynamical systems on hyperbolic groups

### Yo'av Rieck

#### University of Arkansas , USA   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloakb031f9850a9f0c024c3d8994053cbd1d').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addyb031f9850a9f0c024c3d8994053cbd1d = 'y&#111;&#97;v' + '&#64;'; addyb031f9850a9f0c024c3d8994053cbd1d = addyb031f9850a9f0c024c3d8994053cbd1d + '&#117;&#97;rk' + '&#46;' + '&#101;d&#117;'; var addy_textb031f9850a9f0c024c3d8994053cbd1d = 'y&#111;&#97;v' + '&#64;' + '&#117;&#97;rk' + '&#46;' + '&#101;d&#117;';document.getElementById('cloakb031f9850a9f0c024c3d8994053cbd1d').innerHTML += '<a ' + path + '\'' + prefix + ':' + addyb031f9850a9f0c024c3d8994053cbd1d + '\'>'+addy_textb031f9850a9f0c024c3d8994053cbd1d+'<\/a>';

Let $G$ be an infinite hyperbolic group.

By a \em dynamical system \em on $G$ we mean an action of $G$ on a compact space $X$. The most commonly studied (and best understood) type of dynamical system, called SFT (subshift of finite type), is given by a closed, $G$-invariant subspace $X \subset A^G$, where $A$ is any finite set. We will explain these terms in the talk and show why an SFT on $G$ is essentially a tiling'' of $G$.

Gromov studied SFT's on $G$ in his original paper about hyperbolic groups, and much work on the subject was done by Coornaert and Papadopoulos. In particular, $G$ admits an SFT that can be used to study its action on its boundary.

A non-empty SFT is called \em strongly aperiodic \em if the stabilizer of every point is trivial. The question of which finitely generated, infinite groups admits a strongly aperiodic SFT has a long history, dating back to the foundational work of Wang and Berger in the 60's. Few groups are known not to admit one, and many are known to admit one; however, until the current work, the only hyperbolic groups that were known to admit a strongly aperiodic SFT were surface groups (Cohen and Goodman-Strauss).

In this talk we will describe the construction of a strongly aperiodic SFT when $G$ is one-ended, which is the key for the following result:

{\bf Theorem.} An infinite hyperbolic group admits a strongly aperiodic SFT if and only if it is one-ended.

Time permitting we will discuss further development related to this construction.

Joint work with David Bruce Cohen and Chaim Goodman--Strauss.

View abstract PDF

Thursday, July 15, 18:00 ~ 18:30 UTC-3

## On non almost-fibered knots

### Araceli Guzmán Tristán

#### CIMAT Guanajuato, México   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloak2d1607e3becae1919fd1bd2e1fc092d9').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addy2d1607e3becae1919fd1bd2e1fc092d9 = '&#97;r&#97;c&#101;l&#105;.g&#117;zm&#97;n' + '&#64;'; addy2d1607e3becae1919fd1bd2e1fc092d9 = addy2d1607e3becae1919fd1bd2e1fc092d9 + 'c&#105;m&#97;t' + '&#46;' + 'mx'; var addy_text2d1607e3becae1919fd1bd2e1fc092d9 = '&#97;r&#97;c&#101;l&#105;.g&#117;zm&#97;n' + '&#64;' + 'c&#105;m&#97;t' + '&#46;' + 'mx';document.getElementById('cloak2d1607e3becae1919fd1bd2e1fc092d9').innerHTML += '<a ' + path + '\'' + prefix + ':' + addy2d1607e3becae1919fd1bd2e1fc092d9 + '\'>'+addy_text2d1607e3becae1919fd1bd2e1fc092d9+'<\/a>';

An almost-fibered knot is a knot whose complement possesses a circular thin position in which there is one and only one weakly incompressible Seifert surface and one incompressible Seifert surface. Infinite examples of almost-fibered knots are known. In this talk, we will show the existence of infinitely many hyperbolic genus one knots that are not almost-fibered.

Joint work with Mario Eudave Muñoz (Instituto de Matemáticas, UNAM) and Enrique Ramírez Losada (CIMAT, Guanajuato).

View abstract PDF

Thursday, July 15, 18:40 ~ 19:10 UTC-3

## Berge Conjecture for tunnel number one knots

### Tao Li

#### Boston College, U.S.A.   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloak7cc618d094726ab9256d6b218de3c0c2').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addy7cc618d094726ab9256d6b218de3c0c2 = 't&#97;&#111;l&#105;' + '&#64;'; addy7cc618d094726ab9256d6b218de3c0c2 = addy7cc618d094726ab9256d6b218de3c0c2 + 'bc' + '&#46;' + '&#101;d&#117;'; var addy_text7cc618d094726ab9256d6b218de3c0c2 = 't&#97;&#111;l&#105;' + '&#64;' + 'bc' + '&#46;' + '&#101;d&#117;';document.getElementById('cloak7cc618d094726ab9256d6b218de3c0c2').innerHTML += '<a ' + path + '\'' + prefix + ':' + addy7cc618d094726ab9256d6b218de3c0c2 + '\'>'+addy_text7cc618d094726ab9256d6b218de3c0c2+'<\/a>';

Let $K$ be a tunnel number one knot in $M$, where $M$ is either $S^3$, $S^2\times S^1$, or a connected sum of $S^2\times S^1$ with a lens space. We prove that if a Dehn surgery on $K$ yields a lens space, then $K$ is a doubly primitive knot in $M$. For $M = S^3$ this resolves the tunnel number one Berge Conjecture. For $M = S^2\times S^1$ this resolves a conjecture of Greene and Baker-Buck-Lecuona for tunnel number one knots.

Joint work with Yoav Moriah (Technion, Israel) and Tali Pinsky (Technion, Israel).

View abstract PDF

Thursday, July 15, 19:20 ~ 19:50 UTC-3

## Embeddability in $\mathbb R^3$ is NP-hard

### Eric Sedgwick

#### DePaul University, United States   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloaka13c23385045ba1089d3f06ab821b2f0').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addya13c23385045ba1089d3f06ab821b2f0 = '&#101;s&#101;dgw&#105;ck' + '&#64;'; addya13c23385045ba1089d3f06ab821b2f0 = addya13c23385045ba1089d3f06ab821b2f0 + 'cdm' + '&#46;' + 'd&#101;p&#97;&#117;l' + '&#46;' + '&#101;d&#117;'; var addy_texta13c23385045ba1089d3f06ab821b2f0 = '&#101;s&#101;dgw&#105;ck' + '&#64;' + 'cdm' + '&#46;' + 'd&#101;p&#97;&#117;l' + '&#46;' + '&#101;d&#117;';document.getElementById('cloaka13c23385045ba1089d3f06ab821b2f0').innerHTML += '<a ' + path + '\'' + prefix + ':' + addya13c23385045ba1089d3f06ab821b2f0 + '\'>'+addy_texta13c23385045ba1089d3f06ab821b2f0+'<\/a>';

We prove that the problem of deciding whether a 2–or 3–dimensional simplicial complex embeds into $\mathbb R^3$ is NP-hard. This stands in contrast with the lower dimensional cases which can be solved in linear time, and a variety of computational problems in $\mathbb R^3$ like unknot or 3–sphere recognition which are in NP ∩ co-NP (assuming the generalized Riemann hypothesis). Our reduction encodes a satisfiability instance into the embeddability problem of a 3–manifold with boundary tori, and relies extensively on techniques from low-dimensional topology, most importantly Dehn fillings on link complements.

Joint work with Arnaud de Mesmay (CNRS, GIPSA-Lab, France), Yo'av Rieck (University of Arkansas, USA) and Martin Tancer (Charles University, Czech Republic)..

View abstract PDF

Friday, July 23, 16:00 ~ 16:30 UTC-3

## Generalizing classical knot invariants

### Maggy Tomova

#### The University of Iowa, United States   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloak2aa5737979de73c91b3324766a08fc30').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addy2aa5737979de73c91b3324766a08fc30 = 'm&#97;ggy-t&#111;m&#111;v&#97;' + '&#64;'; addy2aa5737979de73c91b3324766a08fc30 = addy2aa5737979de73c91b3324766a08fc30 + '&#117;&#105;&#111;w&#97;' + '&#46;' + '&#101;d&#117;'; var addy_text2aa5737979de73c91b3324766a08fc30 = 'm&#97;ggy-t&#111;m&#111;v&#97;' + '&#64;' + '&#117;&#105;&#111;w&#97;' + '&#46;' + '&#101;d&#117;';document.getElementById('cloak2aa5737979de73c91b3324766a08fc30').innerHTML += '<a ' + path + '\'' + prefix + ':' + addy2aa5737979de73c91b3324766a08fc30 + '\'>'+addy_text2aa5737979de73c91b3324766a08fc30+'<\/a>';

Abstract: Tunnel number and knot width are well-known and very useful invariants. They are however not additive. In this talk, I will present joint work with Scott Taylor of generalizations of these invariants that are additive.

Joint work with Scott Taylor (Colby College).

View abstract PDF

Friday, July 23, 16:40 ~ 17:10 UTC-3

## Instantons and Knot Concordance

### Juanita Pinzón Caicedo

#### University of Notre Dame, USA   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloakb4f35919d18c922a73714f9b9f73b647').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addyb4f35919d18c922a73714f9b9f73b647 = 'jp&#105;nz&#111;nc' + '&#64;'; addyb4f35919d18c922a73714f9b9f73b647 = addyb4f35919d18c922a73714f9b9f73b647 + 'nd' + '&#46;' + '&#101;d&#117;'; var addy_textb4f35919d18c922a73714f9b9f73b647 = 'jp&#105;nz&#111;nc' + '&#64;' + 'nd' + '&#46;' + '&#101;d&#117;';document.getElementById('cloakb4f35919d18c922a73714f9b9f73b647').innerHTML += '<a ' + path + '\'' + prefix + ':' + addyb4f35919d18c922a73714f9b9f73b647 + '\'>'+addy_textb4f35919d18c922a73714f9b9f73b647+'<\/a>';

Knot concordance can be regarded as the study of knots as boundaries of surfaces embedded in spaces of dimension 4. Specifically, two knots $K_0$ and $K_1$ are said to be smoothly concordant if there is a smooth embedding of the annulus $S^1 \times [0, 1]$ into the cylinder'' $S^3 \times [0, 1]$ that restricts to the given knots at each end. Smooth concordance is an equivalence relation, and the set $\mathcal{C}$ of smooth concordance classes of knots is an abelian group with connected sum as the binary operation. The algebraic structure of $\mathcal{C}$, the concordance class of the unknot, and the set of knots that are topologically slice but not smoothly slice are much studied objects in low-dimensional topology. Gauge theoretical results on the nonexistence of certain definite smooth 4-manifolds can be used to better understand these objects. In particular, the study of anti-self dual connections on 4-manifolds can be used to shown that (1) the group of topologically slice knots up to smooth concordance contains a subgroup isomorphic to $\mathbb{Z}^\infty$, and (2) satellite operations that are similar to cables are not homomorphisms on $\mathcal{C}$.

Joint work with Matt Hedden (Michigan State University, USA) and Tye Lidman (North Carolina State University, USA).

View abstract PDF

Friday, July 23, 17:20 ~ 17:50 UTC-3

## Flows, growth rates and veering triangulations

### Yair Minsky

#### Yale University, United States   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloak763768f37aa029662364148ee5602185').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addy763768f37aa029662364148ee5602185 = 'y&#97;&#105;r.m&#105;nsky' + '&#64;'; addy763768f37aa029662364148ee5602185 = addy763768f37aa029662364148ee5602185 + 'y&#97;l&#101;' + '&#46;' + '&#101;d&#117;'; var addy_text763768f37aa029662364148ee5602185 = 'y&#97;&#105;r.m&#105;nsky' + '&#64;' + 'y&#97;l&#101;' + '&#46;' + '&#101;d&#117;';document.getElementById('cloak763768f37aa029662364148ee5602185').innerHTML += '<a ' + path + '\'' + prefix + ':' + addy763768f37aa029662364148ee5602185 + '\'>'+addy_text763768f37aa029662364148ee5602185+'<\/a>';

The work of Thurston, Fried, McMullen, Mosher, Fenley and others weaves together a rich picture of fibrations and flows in 3-manifolds, linking growth rates of orbits, dilatations of pseudo-Anosov maps, and Thurston's norm on homology. Agol and Gueritaud introduced veering triangulations, which are ideal triangulations associated with (certain) pseudo-Anosov flows. We use these triangulations to construct a polynomial invariant that extends McMullen's Teichmuller polynomial from suspension flows to the more general setting. We develop a combinatorial model for the flow which, with the polynomial, permits explicit computations of growth rates of orbits in naturally defined subsets of the flow. As an application we obtain, for a fibered 3-manifold, a description of the limit set of the dilatations of fibrations belonging to a fibered face of Thurston's norm. This is joint work with Michael Landry and Sam Taylor.

View abstract PDF

Friday, July 23, 18:00 ~ 18:30 UTC-3

## The Strong Slope Conjecture for Mazur pattern satellite knots

### Kimihiko Motegi

#### Nihon University, Japan   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloak0dce540d48dc489044a3374318d188aa').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addy0dce540d48dc489044a3374318d188aa = 'm&#111;t&#101;g&#105;.k&#105;m&#105;h&#105;k&#111;' + '&#64;'; addy0dce540d48dc489044a3374318d188aa = addy0dce540d48dc489044a3374318d188aa + 'n&#105;h&#111;n-&#117;' + '&#46;' + '&#97;c' + '&#46;' + 'jp'; var addy_text0dce540d48dc489044a3374318d188aa = 'm&#111;t&#101;g&#105;.k&#105;m&#105;h&#105;k&#111;' + '&#64;' + 'n&#105;h&#111;n-&#117;' + '&#46;' + '&#97;c' + '&#46;' + 'jp';document.getElementById('cloak0dce540d48dc489044a3374318d188aa').innerHTML += '<a ' + path + '\'' + prefix + ':' + addy0dce540d48dc489044a3374318d188aa + '\'>'+addy_text0dce540d48dc489044a3374318d188aa+'<\/a>';

The Slope Conjecture proposed by Garoufalidis asserts that the degree of the colored Jones polynomial determines a boundary slope, and its refinement, the Strong Slope Conjecture proposed by Kalfagianni and Tran asserts that the linear term in the degree determines the topology of an essential surface that satisfies the Slope Conjecture. Under certain hypotheses, we show that a Mazur pattern satellite knots satisfy the Strong Slope Conjecture if the original knot does. Consequently, combining with previous results, any knot obtained by a finite sequence of cabling, connected sums, Whitehead doubling and taking Mazur pattern satellites of adequate knots (including alternating knots) or torus knots satisfies the Strong Slope Conjecture.

Joint work with Kenneth L. Baker (University of Miami) and Toshie Takata (Kyushu University).

View abstract PDF

Friday, July 23, 18:40 ~ 19:10 UTC-3

## Guaranteed-quality triangular meshes

### Joel Hass

All surfaces can be triangulated, but in applications one seeks triangulations that have nice regularity properties. For computer graphics, finite elements, morphing, image recognition and other uses, one would like to have triangles whose angles are bounded away from zero degrees, and even better as close to 60 degrees as possible. I will talk here about a new algorithm developed jointly with Maria Trnkova that improves previously obtained bounds. It produces a triangulation, or mesh, with all angles in the interval $[35.2^o, 101.5^o$].

View abstract PDF

Friday, July 23, 19:20 ~ 19:50 UTC-3